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1. INTRODUCTION

The problems of testing the hypotheses on the structures

of the covariance matrices of the real multivariate normal

populations received considerable attention in recent years.

But, not much work was done on the covariance structures of

the complex multivariate normal populations. Investigations

on covariance structures of the complex multivariate normal

populations have important applications in the area of inference

on multiple time series since certain estimates of the spectral

density matrix of the multivariate stationary Gaussian time

series are approximately distributed as the complex Wishart

matrix. The object of this paper is to investigate the null

and nonnull asymptotic distributions of the likelihood ratio

statistics for testing the hypotheses on the covariance struc-

tures of the complex multivariate normal populations. For

some discussions on the applications of the complex multivariate

distributions, the reader is referred to Brillinger (1974).

Hannan (1970) and Krishnaiah (1976).

In Section 3 of this paper, we derived the asymptotic null

distribution of the likelihood ratio statistic for multiple

independence whereas Section 4 is devoted to the corresponding

distribution in the nonnull case under certain alternatives.

An expression is derived in Section 5 for the asymptotic null

distribution of the likelihood ratio statistic for multiple

homogeneity of the covariance matrices of the complex multi-

variate normal populations. In Section 6, we derived an ex-



2

pression for the asymptotic nonnull distribution of the like-

lihood ratio test statistic for homogeneity of the covariance

matrices of two complex multivariate normal populations under

certain alternatives. The hypotheses considered in Sections

3 - 6 arise in studying certain linear structures of the co-

variance matrices. For a discussion of these problems in tha

real case, the reader is referred to Krishnaiah and Lee (1974).

The expressions obtained in this paper are in terms of the

beta series. In the null cases, it is found that the accuracy

of the approximations based on the first terms of the asymptotic

series are sufficient for many practical purposes. Krishnaiah,

Lee and Chang (1976) approximated the null distributions of

certain powers of the likelihood ratio test statistics for

multiple independence and multiple homogeneity of the covariance

matrices of the complex multivariate normal populations with

Pearson's Type I distributions. But these approximations are

based upon empirical investigations, whereas the investigations

in the present paper are analytic in nature. In the real case,

Rao (1951) gave a useful approximation, in terms of beta series,

for the null distribution of certain power of the multivariate

beta matrix.
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2. PRELIMINARIES

In this section, we define some notation and give some

lemmas which are needed in the sequel.

Let f(x) be a function of the real variable x defined

for x > 0. Then, the Mellin's integral transform of f(x)

is defined (e.g. , see Titchmarch (1937)) as

M{f(.)It} x J lf(x)dx (2.1)

0

where t is a complex variate. If f(x) is absolutely contin-

uous in (0,1), then

f~~x) M{f(.)It}x t dt.(2)

Note that when f(x) =( 1 -x)g-, 0 < x<1.9

Mf(*)It1 fx t-1 (1x)g-ldx - 2(t)F-(g)
0 r(t+g)

for Real (t) > 0 and Real (g) > 0. Hence

1i- J~i -~)x- dt =,1-)gl c >0. (2.3)
2Tri P(t+g) rg

The following lemma was proved by Nair (1940):

Lemma 2.1. Let W,() = f x tp(x)dx where p(x) is the density

of the random variable x. If

()= 0(t-") (2.4)

with Real (t) tending to infinity, then 0(t) can be expanded

as
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p(t) = ]Ri?(t+a)/r(t+a+v+i) (2.5)
i=O

where a is any constant.

Lemma 2.2.

Consider the series a .x which converges to the
i=l i*

function g(x) in the neighborhood of x=O (or the asymptotic

expansion of g(x) when x=O). Then

exp{g(x)} = I + $ Bix i  (2.6)
i~l

where j's satisfy the recurrence relation
3J

B. - Z kak8"k' o = 1 (2.7)

J -O k=l k 
.

We use the following notations as defined in James

(1964). The complex multivariate gamma functions F' (a)p

and r P(a,K) are given by

(a) p(p-l)/2 P

(a) = Tp ) r(a-i+l). (2.8)
p i=l

pa <) p(p-l)/2 P
r (a,K) = n(a-i+l+ki) (2.9)

i=l

where < (kl,k 2 ,... kp ) is a partition of the integer k such

that kl2...>k >0 and k = kl+...+k . The transpose and con-

jugate of a complex matrix B are denoted by B' and B respec-

tively. Also, let CK (A) denote the zonal polynomial of a

Hermitian matrix A, (i.e., A = A )

Lemma 2.3. For any integer r, variate x and Hermitian positive

definite V, we have
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I E V) ( r etr (xV) (2.10)
k=r K (k-r):

cc x al I(K) C(V) 2 2 _
y. I (x tr V -x tr V) etr(xV) (.1

k=0 K k

7 x ka1i(K)C K V) ix r2tr V 2(tr V)r-xr (tr V)r~

k--r 'c (k-r)!

" 2r x r+l trV 2 (tr V)r-l- rx r(tr V)r

" ~rl~ rtrVC tr V }- etr(xV) (2.12)

ilKCKV {x (tr V ) +4x tr V -2x tr V tr V

k=0 k

" 3x 2(tr V) 2_4x 2tr V 2+x tr V) etr~xv)

(2.13)

00 xa(K)C (V)trV+x2 2 2
77= f2x trV+x(tr V) -3x tr V

k= < k

+ 2x tr VI etr(xV) (2.14)

where

i,2 (K) 2 k k(k 2_3jk +3j 2  (2.15)

.j=1jJ



6

The above lemma was proved in Hayakawa (1972). We need the

following in the sequel.

From Hayakawa (1972), Lemma 1

( 1 (K)+k)CK(V) = tr(A3) CK(V)Iv A (2.16)

{3I 2(K)- 2 i2 (K)+6ka I() - 6al (K)+3k
2 _ 2k}C (V)

1 2211-

- [8(tr(A3) 3)+3(tr(A3) 2) 2]C (V) IV=A (2.17)

where A is a diagonal matrix of eigenvalues of V, is the

Hermitian differential operator matrix

R =1 ) R I I

and

2 3vR B 2 ;V

where

V (V )(VRO +iv IP =f 10, CL6

By definition of zonal polynomial

Z CK(V) = (tr V) (2.18)
K

and Eq. (2.16)

al(K)CK(V) = tr(A\) 2(tr V)kV=A -k(trV)
k

= k(k-l) tr V2 (tr V) k-2-(tr V) (2.19)
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Multiply both sides of Eq. (2.1e) by i(K) and sum over K,

by applying Eq. (2.19), we have

1 2 ()C (V) = (3k -2k)(tr V) k-2k 2(k-l) tr V 2(tr-V)k - 2

KK

+ 4 k(k-l)(k-2) tr V 3(tr V)
k - 3

+ k(k-l)(k-2)(k-3)(tr V2 )2 (tr V)k -4 . (2.20)

From Eq. (2.17) and Eqs. (2.18) , (2.19), (2.20), we obtain

= (3 k-k)(tr A) k3k(k-l) tr V 2(tr V)
k - 2

3 k-3+ 2 k(k-1) (k-2) tr V (tr V) . (2.21)

Eqs. (2.18) - (2.21) are needed subsequently. Here we note

that Lemma 2.3 follows by multiplying both sides of Eqs.
kx

(2.18)- (2. 21) by 2-- and summing over k.

k ! ,-, .. .. i
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3.ASYMPTOTIC DISTRIBUTION OF THE LIKELIHOOD RATIO

STATISTIC FOR TESTING MULTIPLE INDEPENDENCE

Let Z' be distributed as a complex multi-

variate normal with mean vector h. and covariance matrix

Also, let Ef(Zi- i)(Z-..)} = Z... We will assume that

Z. is of order pi ' 1 and b = p1 +...+p Consider the hypo-
14 1d

thesis H where
0

H 0 Z.. = 0 (itj=l,... d). (3.1)

Let (ZZ ..... )- ) (j = 1,2 ... N) be N independent obser-

vations on Z'. Also, let A = (A, ), where

N N
A = (Z j-£ . . 1 ,d).

_m 4Zj- z)(Zmj -m- NZ z z
lj-1 (3.2)

The likelihood ratio statistic for testing H0  is

d
X = JAI 7 A ii0 _1 3.3A.l (3.3)

i= 1

Make the transformation u = Ni"s where s is a constant

to be chosen to govern the rate of convergence. The hth

moment of u is

h b (n+1-j+l) d p
E(u ) = h 1} 1 -. (3.4)

j=l F(n-j+l) i=l a=1 F(n+L -c±+l)

By using the Mellin's inverse transform, the density of

u becomes
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b h
K(b,d,Pin )  c+i (n+-j+)f~u) = I u-h-il dh 3.5

27i d Pi h

c-i I  F (n+-- a+ )

i=l sl

d Pi b
where K(b,d,pin) 7 T F(n-t+l)/ TI F(n-j+l). Set

i- =i j=l

n-m+3,e = c+ms where n =N-I and m+n- = - where - is also
S S

a converging factor to be chosen. Then we have

e+i-
f~)=K(b'd'Pi'n) u Sm-I f u-t ;(t) dt (3.6)

2-,Ti e-i-

and

P t d Pi
= r(+ 6- j +i) / T r (- + 6 -a ). (3.7)

j=l S i=l a=l

By the use of formula for the asymptotic expansion of gamma

function, we have

log r(x+g) = log v27 + (x+g-l) log x-x

B r+I (g)

-
(3.8)

r=l r(r+l)xr

for g bounded and Br (g) is the Bernoulli polynomial of

degree r. So,

log (t) = log s + log t- + Z -+ (3.9)
r=l t

where
b(b+l) d p(p+)
b (3.10)

2 il 2
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)r r d Pi b
A __B_6-i +1 (.1r r(r+l) Lr- r+l (3.11)

Hence

(t)= s t 1+ 7 (3.12)=L'I+ l r I "(.2

the coefficient Qr can be obtained by the recursive equation

rQr - r ZA Qr-Z' Q0 =l. (3.13)

Since P(r) = O(t-), we can use Eo. (2.5) and write :(t)

as follows:

0 r Q 00 r(t+a)

r=l i=O i F(t+a+v+i) (3.14)

and a is a constant to be chosen to govern the rate of

convergence for the resultant series. Using Eq. (3.8) to

expand the gamma function on the right hand side of Eq. (3.14),

we have
r(t+a) _ (,+i) log t + 7 _.J (3.15)log (t+a+v+i) j=l tj

where

A (-l)J [Bj (v+a+i) Bl(a)l (3.16)ij j(j+l) i - + (

Thus

rt(t+ai) -(+i) j ] (
= ta~~i + 7 Z (3.17)

j=l t



and C can be recursively computed asi3

1 * Z C -- 1. (3.18)
j =i,j-' Cio

Substituting Eq. (3.17) in Eq. (3.14) and equating the co-

efficient of same powers of t, Ri is determined explicitly

as

i

SR.. C. 1Q RO(3
j=0 1-1 , ' (3.19)

Now use Eqs. (3.14), (3.12) in Eq. (3.6) and note that the

term by term integration is valid since a factorial series

is uniformly convergent in a half-plane (Doetsch (1971)).

Then we have

IM 0 -t r(t+a) d
f(u) =K(b,d,p i,n) usml sv 7 R . u (t+a dt

j=0 i ' J~ e r (t+a+',,+j)7e- i
(3.20)

Using Eq. (2.3) for the integral, we have

f(u) ;K(b,d,Pi,n) sv  Z R. us m + a - 1 (1-u),+ J-1 / r('+j),O < u < 1

j=0 J

(3.21)

Thus the c.d.f. of u in terms of incomplete beta functions

I •, .) is

0r ( sm+ a)Prob (u<x) =K(b,d,pi,n) s) R I x(sm+a v+j) (sm+a~v+j)

(3.22)
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where

I ( a,) = 3 a ( (l-u) du. (3.23)
0

d Pi
Hn t(n-a+l)

Further expansion of K(bdpin) = b and
1 b

R r(n-j+l)
j=1

r(sm+a) gives us that
P~sm+a+v+j)

log K(b,d,pi,n) =1 ogm" + r

r=l m

where

(-)r d Pi 1 A
A (-1 B 7- -+ r
r r(r+l) B i - l =1 rs r

(3.24)

and

K(bdpin) = m r 

where

1 1
A* Q= 1 (3.25)Qr F 9. £A r-£ 0 •

Also

l (sm+a) l - ( + j ) + A!
log (s+a) o r=l r  (3.26)

where
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A (-)r CBA(a+v+j  Br(a ) ] I A r (3.27)jr sr r(r+l) B +v 3.2s7r

and
C*

F(sm+a) = (ms)-(v+j) i+ Svr (3.28)
F(sm+a+v+j)r in r

r C.
c* =! A* C* = Jr C* = 1. (3.29)jr r =i ji j,r-Z sr jO

Hence, Eq. (3.22) is of the form

Prob (u 'r.) = 1i+ R. I (sm+a,v+j)(ms)-J
+ r=li mr  j=O X

00 C.

[12L. + (3.30)
r=l (sin)

co 1
(sm+a, v) + -L Giix m

where

i J *C
G i  j 0 R i-j I x(sm+a,-)+i-j) Q*Z C-j,j-" . (3.31)

j:O -Z=0 si-Z

The exact c.d.f. can be calculated with the above formula

when the sample size n is small. A suitable choice of 6

will make m large in order to expedite the convergence

of the series in Eq. (3.30).

For large sample size n, let us now examine the first

few terms of Eq. (3.30). We know that
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G= Ix(sm+av) [ - - !I + Q) + R1 I (sm+a,v+l)/s (3.32)

G2  I(sm+a,v) 0+ + RCo1+Q +RIi(Sm+a, +l) +
2S S "S SI

+ R2 Ix(sm+a,v+2)/s2 (3.33)

G 3 = II(sm+a) s +  s 2  s 3

+ R1 I(sm+a,v+l) C + + L2
S S S"

+ R2 Ix(sm+a, +2 ) f.1 + 1) + R3 I (sm+aa+3)/s3 (3.34)

From Eqs.(3.24), (3.25), we have

1 b d Pi (.5
1* Z B2 (6-i+i)- I B 1 (3.35)

i121=1 2 ~ a=l260c

Eqs. (3.11), (3.13) give

Q= A1 = - sAl - sQ I  (3.36)

From Eq. (3.19), we have

RI + C01 = Q1 (3.37)

Eq. (3.16), (3.18) give

CO1  AOI - [B2 (v+a) - B 2 (a)] (3.38)

01 Ol 2 2
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By expanding B2 (x) = x
2 - x + U, which is the Bernoulli

polynomial and setting

b(b+l)(2b+l)- d pi(pi+l)(2pi+l)

= -(3.39)
1 6 i=l 6

Vl-V

6 = 1- (3.40)
o -27

a = (1-v)/2 (3.41)

in Eq. (3.35) and (3.38), we obtain

A* = Q1 Cl 0(3.42)

A1 = Q= R= 0 (3.43)

Hence these results together with Eqs. (3.11), (3.13), (3.16),

(3.18), (3.19) give

R2 + C 0 2 = Q2 (3.44)

_1

C0 2 = A0 2 = . [B3 (v+ao) - B3 (a)] (3.45)

Q = A2 = -- Z B3 (5o-a+1)- 
[ B3 (5o-i+1 . (3.46)2 2 a=l i(o-+) l3'

By equating Eq. (3.45) and Eq. (3.46), and expanding

B (x) = x 3  3 x 2 + 1 x, we obtain

s (3.47)
24A2
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If we choose s to be the positive root of Eq. (3.47), then
0

R2  0. (3.48)

Now

C0 2  Q 2  A2
- = -A = A* (3.49)

0o 0 0o 2

Hence

C + Q = C02 Q* 0 (3.50)
s o

0

In Eq. (3.19)

R3 Q3  C03  (.1

Eqs. (3.11), (3.13) give

Q3 -A3 = - s 3 A* - s 3  * (.2
=oA 3 =-so Q3 " (3.52)

o 3  o 3So

R 3=-s(Q* + C03.(.3

0

All these identities induce that

G1 = G2 = 0 (3.54)

Ga = ( (I(Somo+ao ,v3) - I (somo+a0 , )) (3.55)

s0

where

m = n - 0 (3.56)
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Thus by so choosing Sot a0 and so, we have the c.d.f. of

u in asymptotic form as

Prob (u < x) = (s omo+a 0 ,V)

1 R
+ -1 -R [Ix(somo+aov+3)
m s

0 0

- Ix(somo+aoV)J + 0(mo4). (3.57)

2-b

For d =2, P1 =1, we have v 0 = b-l, a° = 'o 2

so =1, and

Prob (X < x) = I X(N-b,b-1) . (3.58)

Table 1 gives a comparison of the accuracy of the approx-

imation by taking the first term in (3.57) with the approxi-

mation obtained by taking the first two terms in (3.57). In

the table, the constant w is defined by c = exp(-i/2)

where PCX<cl = a and the values of w are taken from the

tables of Krishnaiah, Lee and Chang (1976). The value of

P[k<c] is denoted by al or a2 according as one term or two

terms in (3.57) are used. Also, pi=p for i=l,2, .. ,d.



18

TABLE 1

Significance Level Associated with the Asymptotic

Expression for the Likelihood Ratio Test for Independence

n d=3, p=1, a=0.05 d=3, p=2 , a=0.05 d=5, p=2, a=0.05

1 a2  1 2 1 2

10 1.459 .0499 .0499 5.143 .0488 .0493 - - -

15 .923 .0499 .0499 2.987 .0498 .0499 9.746 .0454 .0472

20 .675 .0500 .0500 2.113 .0499 .0500 6.510 .0486 .0493

30 .439 .0502 .0502 1.337 .0495 .0495 3.950 .0496 .0498

TABLE 1 (Continued)

n d=3, p=l, a=0.10 d=3, p=2, a=0.10 d=5, p=2, a=0.10

1 2 '1 '2 1 2

10 1.233 .0998 .0999 4.679 .0982 .0991 - - -

15 .780 .0999 .1000 2.722 .0995 .0997 9.222 .0928 .0958

20 .570 .1004 .1004 1.926 .0998 .0998 6.167 .0979 .0990

30 .372 .0994 .0994 1.218 .0995 .0995 3.743 .0996 .0999
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4. NONNULL ASYMPTOTIC DISTRIBUTION OF THE LIKELIHOOD

RATIO TEST STATISTIC FOR INDEPENDENCE

OF TWO SETS OF VARIABLES

Consider the case d = 2, p1 = p and P2 = q in Section

3. (Z{,Z') is distributed as complex multivariate normal

with mean vector ' and covariance matrix Z where

= {~ 21(4.1)E 21 E22(41

Also, A = (Aij) is as defined in Eq. (3.2) and p < q. The

likelihood ratio statistic for testing ZI2 = 0 against the

alternative Zl2 t 0 is given by

X IAI/1A1 1A221 = I - A2A-'A2A-

(4.2)

= II - R21

whee 2  dig 2 2 2 2where = diag 1, . v1> ... >y and Y's are the

sample canonical correlations between Z1 and Z2.

Let n = N-1 = m0 + 50' where 5o is defined in Eq. (3.40).

and assume

p 2 = W (4.3)
m

2 2 2where W is fixed as mo-. Also, P ,iag (p , .
2 2

and p2>... >p are the roots of the characteristic equation
p

Ill 12z2=2 0. (4.4)
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2 2

Using the density of l) .... Yp given in James (1964) the
hth moetofu=1/s 0
h moment of u , so  as defined in Eq. (3.41), be-

comes

h2,n2 
P r(n+ki i+l)2

E(u h ) = CIK(Pn  I )p
k K k. i=l r(n-i+l) r(n-q-i+l)

h

P(n-q + - i+l)

X 0 (4.5)
F(n + 1 +k.-i+l)

so I

where C (M) is the zonal polynomial of Hermitian matrix

M, K= (kl,k2 ,... kp) is a partition of k,kl>k2>.., k >0

and k = k1 +...+k p . The non-null distribution is obtained by

using the inverse Mellin transform and by following the

argument from Eq. (3.4) to Eq. (3.29). Substituting 6 , a°

and so  as in Eq. (3.40), (3.41) and (3.47), we have

21 (P2 k 00 O;(k)

Prob (u < x)= i-p2  M C(k' mck+ 7 ]
-- k "r~l m 0

x I R.(k) I (S m +a v+j+k)(m So )- j

j=0 X 0 0 0

Note that
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(s m +aV~j~k rx -(s 0m a+a 0+v+j+k)
Cs m + ,VJ I(s m +a)I'vj)

0 0 0 0

xUs0 m0 +a0 -1(1-u) vjk1du (4.7)

is a function of k, and we have the following expressions

analogous to Eqs. (3.11), (3.13), (3.16), (3.18), (3.19),

(3.24), (3.25), (3.27) and (3.29)

i
.7 R. .-(k) C. (k) = Q.() k 1 (4.8)

1 r
Qr (k) = r 7l ZA z(k) Q r-Z(k) (4.9)

(-1) r Sr
A (k) T [ (B (5 +k.- i+l) -B ( -+)(.0r r(r+l) __ r+l 0o ~

Cir (k) =. I kA. (k) C irZ (k); C.0 (k) =1 (4.11)

_, r
A. (k) (- %)a+~i (a 2(4.12)

ir r(r+1) [B+l('aki 0 B+l o

Q*(k) Z ZA*(k) Q*_ (k), Q*(k) =1 (4.13)

A*(k) =(-1) EB [ 1 (6 -i+1) + B (5q-i+l)r r(r+l) rl r+lo0

2B rl(5 -sk.-i~s-)] (4.14)
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1 r
C (k) = r £ ZA (k) Cr (k) C* (k) = 1 (4.15)ir =l i l,r-Z ' io(

Ai+k B~ a4v+k+i) B (a )] (4.16)
ir ~s r r(r+l) l0rl0

and v is defined in Eq. (3.10): here

1 = pq (4.17)

The asymptotic expansion of I -P2 n gives

m +'
W 01I-p21 = I I-

0

_ ;" tr W r

= exp (mo+5o r-1 r r

. 1 1 W
= exp (-trW) 1-- o trW+ tr W)

.n o
0

- 1~o 2 1 3
- T o tr W + - tr W 3 )

1 tr W+ tr W2)-2 -0o 2 r ))

+ O(m 3 ) (4.18)
0

and

C(p2)m < = C(2 (4.19)
K 0 <m 0Jm (W

since the zonal polynomial C <(M) is homogeneous of degree

k. Furthermore, the use of formula for the Bernoulli
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polynomial

n
B (x+g) O() B _(x)gr (4.20)

r=0

shows

A*(k) = A+ (25 o1) k+a (4.21)

Col(k) 1 [(2(ao+v)-1) k + k2 ]  (4.22)
0 0

Q (k) Q* (+o+)k + . (26o+1)2 k 2
Q2( ) 2 - (

1 1 2
(26o+1) 1 (K) + (26o+l)ki1(K) +1 a2(K) 1 K

(4.23)

* * (ao0+V) 2  1 2C0 2 (k) = C0 2 + - 2 k+ -- I(v+a+1) +( +v)] k(k-1)
s 2s

+ 6 - k(k-1) (k-2) 2-1 k (k-1) (k-2) (k-3) (4.24)
12s 2 8s0

00 +
0

a0+v 1 k2
Cll(k) -- I [(2(a +,)+I) k + k2] (4.25)

0 0

where

At' C0  0, Q* + 0 (4.26)0I=C1 Q2 02 = 0(.6

as in Eq. (3.42), (3.50) , by suitably chosen ao. 6., so  in

Eq. (3.40), (3.41), (3..,7) and iI(K) , a 2 (K) are defined in
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Eq. (2.15). Also

Rl(k) = Ql(k) - C0 (k) (4.27)

R2 (k) = Q2 (k) - C 0 2 (k) - (Ql(k) - C 0 1 (k))Cl(k). (4.28)

Now define

Lk

e(so m o +a o '' + j ) = exp(-e) k k: x(S0 m 0+a °,+j+k) (4.29)

wvith I (somo+ao, '+jk) as defined in Eq. (4.7) and

e = tr W. (4.30)

Substitution of Eqs. (4.21) - (4.28) in Eq. (4.6), and

application of Eqs. (2.18) - (2.21) over < gives the

following expression for the non-null asymptotic distri-

bution of u up to order m-2
0

Prob (u < x)

= 3,(smo+ao, V)

m' 8se(somo+ao', 0 tr W - tr W2 )

a +v

3 (S0m0+a0,v+l)(2 o 0 o tr W

s m +a v+2) - -6 +-- tr W+tr W2  1 (trW)22

" 3,(somo+ao '+3) o(tr W) trW
o o 0-
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f 202
+ e(Somo+ao,)) (tr W) - trW - trWmo

00

, 0 tr (tr W )
0

+ (sm+a +2) _ 2+ o+ -(a+ a,) W2)
eo-' o s 2 2 ) trwo 0 SO  S

0 0v

2(ao+) 1 tr W2 +(s-((v+ao+l)

o 2o o

0

36 (a +V) 26 2 1
+ (v+a )) _ - - + 32 +

0 s o0 o

2 60O  6 0ao +,v
(tr W)2  + 5 + v r-- tr W2

0 0

1 W2 )2 1

1 (tr W + 1 tr (tr W)2

0

+ 9  (a+V)2+(ao+v) 26o (a+v) tr W

0e(Somo+ao'v+3)o+ 0 2 s 0)0 0

+ 7 + 5 _ 45 tr W2 + tr W 3

0 0

2(ao+V)2 + 3(a0 +v)+l 3io(ao+v)

2s2  so0
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46 0 + 26 2 + 1 (tr W) 2

s0 0

+ [ a + 2 -3 (tr W)3 +
2s 3s o  To

0 0 0

a0 +v+2 tr W2 1 trW2 2

+ (tr W2)]

+ (somo+a, v+4) 6o 3(a0+,+) tr W2 - 2 tr W3
o2 2

(a +v)2 +4(a +v)+2 6 (a+')+2) 6+ 1] (tr W)
+ 2S 2  

so + 02

- + -v + 3 _6 (tr W)3 + --

0 0

-2601 tr W tr W2  1 2 )2
- tr (tr W)

Ts0

2 (tr W2) 2 1+ 1 -y (tr W)4]

0

e(somo+ao , \+5) trW + 0 -? (tr W)

+ 0 a t++3 trWtr W2 + tr W2 (tr W2

1 2 1(tr W )  (tr W)

4s0

L0
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+ Be(somo+ao,v+6) tr (tr W)2 + (tr W2 )2 +-1 (tr W)

L 8sc 0J

+ O(m 3) (4.31)

When the alternative hypotheses are close to the null

hypotheses, the accuracy obtained by using the first two terms

in the asymptotic expressions is sufficient for practical

purposes. When the alternative hypotheses deviate from the

null hypothesis significantly, we require higher order terms

to obtain very good accuracy.
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5. NULL ASYMPTOTIC DISTRIBUTION OF THE TEST STATISTIC

FOR MULTIPLE HOMOGENEITY OF COVARIANCE MATRICES

Let Z1 .... Zq be independent complex p-variate normal

variables with mean vectors pi .....- q and covariance matri-

ces E1 .... zq, respectively. Also, Let Z ij(j=l,.. . ,Ni )
.th ~d

be j independent observation on Z i. Let H°  H

where H oj(j-l,... ,d) is given by

H qoj . +. . .=z q* (5.1)

and

q =, + .. +q., qo' ql=ql and q*=q. (5.2)

The modified likelihood ratio statistic for testing H0 is

given by

q n. d qj /n -1
T1 JlA./nj I ( n1 1 1 Ai/n*lr 3) (5.3)

i=l j=l i=qj_ +1

where

qj-

N. N.

-Z. ,z 1 1.. i5Aijl [ (Z iJ-1~ . .)(Z ij-i ) Z1 i J Ii 55

where Z denotes the complex conjugate.

~1

Let w =X/ where n n and define i n m
inl
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where 6 is a covergent factor to be determined. Thus
q*t

1/s
ni = (M+5) Yi' and y i Yi, u =  ,where s is also a

1~~ 1

convergent factor. The ht h moment of u is

h = [ da=i I
E~u h) 1np -

p d qa ,(y (m+6)(l+-h
1 11 l s )- + )P*

i=l a=l g=q_l+l +

a h (5.6)

The modified likelihood ratio test statistic X and its

moments are given in Krishnaiah, Lee and Chang (1976).

Using Mellin inverse transform on E(u h), and following the

same lines as in Section 3, we have the following expression

for the c.d.f. of u:

Prob (u < x) = Ix(sm+a,v) + L Gi  (5.7)

x 1 m 1

where
rf~~)x -1 d-l d

I(c)(d) ( )ul(lu) d u (5.8)Ix(Cd = (c+d)f

0

Gi  Ri- j I x(sm+a,v+i-J)( i-k (5.9)
j=O Z=0 s

2

v= P- (q-d) (5.10)

2



3u

d (1 B (,(*6...+1)
A ~~ = . r+1 rr 'Y~ *~

(5.11)

- Br+1(Y S--

rr

Q i X ~A Qr;o ( 5.12)

I= 1

c I~ k A ~ 1 (5.14)

R -U1  . -l C.; .o = 1 (5.15)

A

** r

9jt A* Q*_Z; Q* 1 (5.17)

A.
A* jr(5.18)jr sr
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r C.
C* X A* -* C' =r 1 (5.19)jr F jz jr-Z s r

where B (x) is the Bernoulli polynomial.r

Now, let

a - (5.20)
o 2

= d qc 1 - (5.21)
n +1

2
6= n(2p-1) (5.22)
o0 6p(q-d)

and let s0  be the positive root of

2 (1-v2)(5.23)s =(5.3
24A

Then the asymptotic expression for c.d.f. of u up to

m03, where m 0 = n - 6 is
0 0 0

Prob (u < x) = Ix (s m + a ,v)

1 R3
+ -!T -3 [ (s m + v + 3) (5 .24)

m0 s om0 s 0

- Ix(som ° + aov)] + 0 (mo
4)

x 0 0 0
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Table 2 gives a comparison of the accuracy of the approx-

imation by taking the first term in (5.24) with the approxima-

tion obtained by taking the first two terms in (5.24). In the

table, the constant ii is defined by c = {exp(-w/2))1 / n

where PC[v<c] = a and the values of . are taken from the

tables of Krishnaiah, Lee and Chang (1976). The value of

P[w<c] is denoted by a1 or zL2 according as one term or two

terms in (5.24) are used. Also, ql=... =qd = q/d and ni =n o

for i=l,2,... ,q, n = qn0 .

TABLE 2

Significance Level Associated with the Asymptotic

Expression for the Likelihood Ratio Test for the

Multiple Homogeneity of the Covariance Matrices

n q d p=3, a=0.05 p=4, a=0.05

I 12 w 1 x2

6 3 1 37.24 .049E .0500 67.84 .0490 .0493

6 5 1 64.10 .0497 .0499 118.15 .0475 .0486

10 3 1 33.21 .0500 .0500 56.45 .0499 .0500

10 5 1 57.85 .0499 .0499 100.19 .0497 .0499

20 3 1 30.85 .0499 .0500 50.67 .0499 .0499

20 5 1 54.13 .0500 .0500 90.92 .0500 .0500

10 6 3 46.97 .0501 .0500 81.73 .0501 .0500

10 6 2 58.66 .0499 .0499 102.21 .0498 .0499

20 6 3 43.22 .0500 .0500 72.32 .0500 .0500

20 6 2 54.49 .0500 .0500 91.76 .0500 .0500

30 6 3 42.12 .0500 .0500 69.73 .0500 .0500

30 6 2 53.26 .0500 .0500 88.85 .0500 .0500
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The likelihood ratio test statistic X given by Eq. (5.3)

can be expressed as

X 1 ** Xd (5.25)

where
* ni

IT IAi/niI
i=q +1

j . (5.26)

i=q* +1
j-I

and A. is the likelihood ratio statistic for testing H ..J o

An alternative procedure to test H is given below. We

accept or reject Hoj according as

X > c<~ a

where

P[3 > Ca j=l,0...,dlH o ]

(5.27)

d
= I PXj > cIH Ij = (1-a)

j=l oj

The c.d.f. of X1A can be obtained by replacing d, q
1

and n with 1, ql and n! respectively in Eq. (5.24); the value of

s 1 is obtained by taking the square root of the right side

of (5.23) after replacing d and q with 1 and ql respec-
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1I '(s n
tively. We can similarly obtain the c.d.f. of X ) (i= 2 .  d)3

and determine the values of s2 . 5 d' So, the value of c

in (3.22) can be determined approximately.

The test procedure discussed in this section is useful

in testing the hypothesis that the diagonal blocks in the

covariance matrix of a complex multivariate normal are equal

when the off diagonal blocks are null matrices.
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6. NONNULL ASYMPTOTIC DISTRIBUTION OF THE TEST STATISTIC

FOR EQUALITY OF TWO COVARIANCE MATRICES

Here we shall consider the case for d = 1 and q = 2

in the framework of Section 5. The likelihood ratio criterion

for testing the hypothesis Ho : Z =z 2 against the alternative

H 1 :z 2  is based on the statistic

npn IA1 1 I 1A2 1(6.1

pn1  Pn2  A In
1 n2

where A=AI+A 2,Ai is as defined in Eq.(5.5), and n n1 +n2.

Let

1l/n

n = m° + 60, nl/n = Y1 ,n 2 /n = Y2, w = X (6.2)

where 0 is defined in Eq. (5.22) and assume that0

(i) (I - Z- 12 W W is fixed as m
1 0 (6.3)

(ii) 0 < lim Y. < 1; i=1,21

h th 1/s

The non-null ht h moment of u=w o is

ph r p'(n2 (-+)3 -n1E (u h ) n sl 02 1pn ) r ~ 2

n I n 2 (n n
n1 2 (6.4)

h

-1 r (n,k)F (nlh + 1),<)
X (- K p p in

K k FP(n(-I- +

0
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where < = (kI k ..... k p) is a partition of k and k>k2>. . . >k >0,1' 2' pp

and s0 is the square root of the right side of (5.23) and

2-1, while F (b) is defined in Eq. (2.8), p (b,<) in?= -2 i'p ' p

Eq. (2.9).

The non-null distribution is obtained by using inverse

Mellin transformation and following the same lines as in Sec-

tion 3. The c.d.f. of u is given by

nC K(I-Q2 k
Prob (u <x) =II-nl 1 k! m0  r+-- k <r=l Mo0

k • r(lr O -

OL k) x(s om o+a o' +a)(M0 s0) rVL 1+, z -f1]
1 X 0000

0

(6.5)

C-

-xhere C*. j is defined in Eq. (5.19). a - is defined
jr sr o 2

o 2
in Ea. (5.20) with v = as defined in Eq. (5.10). Also, we

2

have

i
R. (k) C. Qi(k), R0(k) = 1 (6.6)

Q *R 0(kr

Q-kI Z A (k) Qr i(k), Qo(k) = 1 (6.7)rk r =i z r-Z 0

and

A (k)=() r~ Br(y 2 -isr r(r+l) i l Br+l( 6o+ki-i+l) -r

(6.8)

B r+l(Yl 6 +k.i-i+l)

1 o
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Q*(k) A 1 zA(k) Q* (k), Q*(k) = 1 (6.9)
r r -r-ZZ' z u

SBr.,(y 1 5-i1 B
A*(k) - ( _______+ r1 2

i=1 1 2(6.10)

-B r+(60+ki- i+ 1

From Eq. (6.3), we have

11 W

1 1 - 0rn

=exp ~Y(m +6 )f tr W1

exp (-tr W) W1 - 5 t W - tr W 2
m0 1

1 1 222

- ~.5 tr W+ ~TtrW 2 2j

O(m0 )36.2

Also

CK - --Y' 1 k W-~-- 'y 1mk (W). (6.12)
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Now using Eq. (4.20) for the formula 
of the Bernoulli poly-

nomials, we get

(-l)s~ 0 5+k -1+1) B2 (y25o
-i+l) B2 (yIo i

A (s°2 B2( -1 +ki-i+l)-Al 2) i 1 (

(-llSo 0_ (+ ( (6.13)2_ Yl

(6.13)

S k+3ao (<) k-

A (+)(= A s +

0 2

1 B2('y15 -i+l) B 2(Y 2 6o-i+l )

2~k2

B B2( +k Ai+l)!,
2 o i ;( .5

* 1

A + f ((2l o1) k + al()]

Q*(k) = !(A*(k) Q*(k) + 2 A2(k))

--B2  ak-i'l) (ol)kl( 15

= Q + (2 o+1)2 k2 +
2 8 2

(6.16)

1(32+ 5 + 1-(6 +!)al (<)

where Al , A2 , A*, Q2 are defined in Section 5, and il(K),

a(K) are defined in Eq. (2.15). By suitably chosen ao , 50

and so as in Eq. (5.20), (5.22) and (5.23), we get
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A co = 0, Q + * 2 02= 0 (6.17)
s
0

Furthermore, from Eq. (e.6) - (6.8). we get

Q1 (k) = A1 (k)

1

Q 2 (k) - (Al(k) Ql(k) + 2 A2 (k)) (6.18)

R 1 (k) = Q1 (k) - C0 1

R2 (k) = Q2 (k) - C0 2 - (Ql(k) - Co 1 )C1 1

If we now substitute these identities in Eq. (6.5), apply

Eqs. (2.10) - (2.14) for the summation of zonal polynomials,

and neglect the terms of higher order of m 0 , we obtain the

following expression for asymptotic non-null distribution.

Prob(u<x) =Ix(s m +a ,v) +-d [I (s m +a v)-I (s m +a o +1)1
x 00 0o m0 1 x 00o 01 X 00 0*

1 1 (Somo4ao, j+i-l) + O(mo ) (6.19)
mo

1 1. 2where d I = (I-,-- i r

NI = od1 + dl + (I- ) trW 3

v+l d d2  1 1a2 ( 460- -o dl  dl  (1 - --_L)  [tr ( tr W)

a ( 6 o  - + 1) d +! d 1 (2 - ll +  ) tr W3

I3 0I - IIIs ... 1 3II

0 0 1 3Y1
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